CS598 Lecture 15

Backscatter Ideas

- Wi-Fi and other network technologies consume considerable power, with Wi-Fi using around 100 mW, while LTE/5G uses roughly 1 watt.
- Design low power Wi-Fi → transmit really low power OFDM signals
 - Trade-off: lower range, lower SNR, lower data rate

RFIDs

- Stands for low frequency identification.
- Relies on small, battery-free tags that reflect high-power signals sent by specialized RFID readers to communicate data without needing a power source
- How it works:
 - Specialize reader (RFID reader in high power) transmit high power signal to Rx that have small chip with antennas.
 - Rx reflects signal back as square wave, therefore not necessary to generate its own power
 - Reflect \rightarrow 1
 - No reflect → 0
 - RFIDs get 1, 0 sequence from the tag

Medium Access

- Common forms of RFID used: EPC gen2/3
- Tx (Reader): Send a query message to multiple Rx
 - If there are only 3 RFIDs
 - Step 1. The reader pick one of slots from 0 to 3

- Step 2. Each RFID pick one slot from 0 to 3.
 - If collisions in Rx exist, there must be at least 2 RFIDs picked the same slot.
 - The reader would double the size of the slots for free collision (i.e. the reader back-off the slot from 0 to 7)
- Pros:
 - Low power
 - Battery-free
 - Cost is cheap (each tag costs about 10 cents)
- Cons:
 - Specialized hardware
 - Need to have the RFID reader

Ambient Backscatter

- Can I have the RFID or zero power tag to be read from normal devices?
- Backscatter → Reflection-Based
- One version of Backscatter
 - Idea: Because we have many wireless signals like Wi-Fi or cellular networks, can we
 - 1. Harvest the energy
 - 2. Use them to communicate
 - 3. Is readable by commodity devices
 - You want your tag can be identify, and modulated, readable

- You have a external transmitter which transform a single carrier frequency for Wi-Fi in high power
- The tag: receive the signal, mixed Wi-Fi/OFDM/..., and send this over the air, and change it into Wi-Fi signal.
 - A little bit more expensive, but not much
- How to get from ambient signals? → Bluetooth / Cellular / Wi-Fi
- How to make transmit readable? \rightarrow Wi-Fi / Cellular
- The tag only do from bits to OFDM symbols
 - The tag doesn't need to reduce the carrier frequency of the signal since the device it would do it by itself.
 - The RFID tag only change the symbol format
- Pros: You can use off-the shelf reader (1 Mbps)

• Cons: You still need some external source.

WiTag

- Goals:
 - Compatible with existing Wi-Fi access points
 - Encryption
 - Battery-free
 - (We are okay with low throughput / inefficient design)

Frame Aggregation

- Initial design: Spend lots of time waiting
- To avoid overheads such as performing channel sensing and transmitting an acknowledgment per frame, multiple MAC Protocol DATA Units are combined into a larger aggregated frame and therefore improve the efficiency of the MAC layer.

Wi-Tag: Idea

App 1

App 2

Figure 1: 802.11n/ac A-MPDU structure

• Each data unit has its own payload.

- **Overview:** WiTAG's tag selectively interferes with subframes in a query packet transmitted by a client to an access point. Then, the client device obtains the tag's data from the block ACK.
- Send all the packets in one packet
 - Aggregate packets in different application into one packet to send.
- Send the string like 1001 from the receiver (Block ACK)
 - 1 is the packet the receiver get, so the sender knows that no need to send that packet again.
 - 0 is the packet the receiver did not get, so the sender need to send that packet again.
- Issue: inefficient

Corrupting Packets

- Computer $x \rightarrow h \rightarrow AP y$ (direct channel = h)
- Computer $x \rightarrow h' \rightarrow tag \rightarrow h' \rightarrow AP y$ (from tag: channel = h')

$$y = hx + h'x + n = (h+h')x + n$$

- Reflecting $\rightarrow (h + h')x$
- Not Reflecting $\rightarrow hx$ Phase Difference = $\frac{|h'|}{h}$

- Phase states \rightarrow off by 180' $\frac{h+h'}{h-h'}$ Phase Difference = $\frac{2h'}{h}$
- Using a high Modulation → 64 / 128QAM
 - Even a small mistake/shifts in signal amplitude or phase can cause a great noise and lead to bit errors.
- Distances between the client and the AP have to be small (~5m)

- Throughput become small since the tag is far away from both of AP and the client.
- In the middle, we don't have the ability to change the power and can't flip bits easily→ increase the error rate and decrease the throughput.

$$SINR = rac{P_{client}}{P_{Tag} + P_{Noise}}$$
 $P_{Tag} = rac{lpha}{D_{Tagclient}^2 D_{TagAP}^2}$

- If the reflector is between the sender and receiver, then $D_s + D_r$ is constant and is equal to the distances between the sender and receiver.
- Therefore, because the strength of the reflected signal (received at the receiver) is minimized, the BER is slightly increased.

- Pros
 - Works with existing hardware
- Cons
 - Not efficient
 - Low throughput
 - Low range
 - $\circ~$ Interrupts actual data transmitting \rightarrow waste the other resources
 - Normal losses